- бизнес-книги
- детские книги
- дом, дача
- зарубежная литература
-
знания и навыки
- изучение языков
- компьютерная литература
- научно-популярная литература
- словари, справочники
-
учебная и научная литература
- безопасность жизнедеятельности
- военное дело
- гуманитарные и общественные науки
- естественные науки
- задачники
- монографии
- научные труды
- практикумы
- прочая образовательная литература
- сельское и лесное хозяйство
-
технические науки
- высокие технологии
- горное дело
- информатика и вычислительная техника
- конструкции
- легкая промышленность
- материаловедение
- машиностроение
- нормативная документация
- общетехнические дисциплины
- основы производства
- пищевая промышленность
- приборостроение
- проектирование
- промышленность
- радиоэлектроника
- строительство
- техническая литература
- технологии металлов
- транспорт
- химическая технология
- эксплуатация промышленного оборудования
- энергетика
- учебники и пособия для вузов
- учебники и пособия для ссузов
- учебно-методические пособия
- история
- комиксы и манга
- легкое чтение
- психология, мотивация
- публицистика и периодические издания
- родителям
- серьезное чтение
- спорт, здоровье, красота
- хобби, досуг
Kohlas Juerg — Generic Inference. A Unifying Theory for Automated Reasoning
Купить и скачать за 14727.62 ₽
Понравилась книга? Поделись в соцсетях:
Автор: Kohlas Juerg
Издатель: John Wiley & Sons Limited
ISBN: 9781118010846
Описание: This book provides a rigorous algebraic study of the most popular inference formalisms with a special focus on their wide application area, showing that all these tasks can be performed by a single generic inference algorithm. Written by the leading international authority on the topic, it includes an algebraic perspective (study of the valuation algebra framework), an algorithmic perspective (study of the generic inference schemes) and a «practical» perspective (formalisms and applications). Researchers in a number of fields including artificial intelligence, operational research, databases and other areas of computer science; graduate students; and professional programmers of inference methods will benefit from this work.