- бизнес-книги
- детские книги
- дом, дача
- зарубежная литература
-
знания и навыки
- изучение языков
- компьютерная литература
- научно-популярная литература
- словари, справочники
-
учебная и научная литература
- безопасность жизнедеятельности
- военное дело
- гуманитарные и общественные науки
- естественные науки
- задачники
- монографии
- научные труды
- практикумы
- прочая образовательная литература
- сельское и лесное хозяйство
- технические науки
- учебники и пособия для вузов
- учебники и пособия для ссузов
- учебно-методические пособия
- история
- комиксы и манга
- легкое чтение
- психология, мотивация
- публицистика и периодические издания
- родителям
- серьезное чтение
- спорт, здоровье, красота
- хобби, досуг
В. П. Мешалкин — Предварительная оценка прагматической ценности информации в задаче классификации на основе глубоких нейронных сетей
Понравилась книга? Поделись в соцсетях:
Автор: В. П. Мешалкин
Издатель: Синергия
Год: 2021
Описание: Предложен метод предварительной оценки прагматической ценности информации в задаче классификации состояния объекта на основе глубоких рекуррентных сетей долгой краткосрочной памяти. Цель проводимого исследования состояла в разработке метода прогноза состояния контролируемого объекта при минимизации количества используемых прогностических параметров, достигаемой с помощью предварительной оценки прагматической ценности информации. Это особенно актуальная задача в условиях обработки больших данных, характеризуемых не только значительными объемами поступающей информации, но и скоростью ее поступления и полиформатностью. Генерация больших данных сейчас происходит практически во всех сферах деятельности, что обусловлено широким внедрением в них Интернета вещей. Метод реализуется двухуровневой схемой обработки входной информации: на первом уровне применяется алгоритм машинного обучения «случайный лес», который имеет значительно меньшее количество настраиваемых параметров, чем рекуррентная нейронная сеть, используемая на втором уровне для окончательной и более точной классификации состояния контролируемого объекта или процесса. Выбор «случайного леса» обусловлен его способностью к оценке важности переменных в задачах регрессии и классификации. Это используется при определении прагматической ценности входной информации на первом уровне схемы обработки данных. Для этого выбирается параметр, который отражает указанную ценность в каком-либо смысле, и на основе ранжирования входных переменных по уровню важности осуществляется их отбор для формирования обучающих наборов данных для рекуррентной сети. Алгоритм предложенного метода обработки данных с предварительной оценкой прагматической ценности информации реализован в программе на языке MatLAB и показал свою работоспособность в эксперименте на модельных данных.