-
бизнес-книги
- банковское дело
- бухучет / налогообложение / аудит
- государственное и муниципальное управление
- делопроизводство
- интернет-бизнес
- кадровый менеджмент
- корпоративная культура
- краткое содержание
- личная эффективность
- личные финансы
- логистика
- малый и средний бизнес
- маркетинг, PR, реклама
- менеджмент
- менеджмент и кадры
- недвижимость
- о бизнесе популярно
- отраслевые издания
- переговоры
- поиск работы / карьера
- политическое управление
- продажи
- работа с клиентами
- стартапы и создание бизнеса
- тайм-менеджмент
- финансы
- ценные бумаги / инвестиции
- детские книги
- дом, дача
- зарубежная литература
- знания и навыки
- история
- комиксы и манга
- легкое чтение
- психология, мотивация
- публицистика и периодические издания
- родителям
- серьезное чтение
- спорт, здоровье, красота
- хобби, досуг
Nathan E. Myers — Self-Service Data Analytics and Governance for Managers
Понравилась книга? Поделись в соцсетях:
Автор: Nathan E. Myers
Издатель: John Wiley & Sons Limited
ISBN: 9781119773306
Описание: Project governance, investment governance, and risk governance precepts are woven together in Self-Service Data Analytics and Governance for Managers , equipping managers to structure the inevitable chaos that can result as end-users take matters into their own hands Motivated by the promise of control and efficiency benefits, the widespread adoption of data analytics tools has created a new fast-moving environment of digital transformation in the finance, accounting, and operations world, where entire functions spend their days processing in spreadsheets. With the decentralization of application development as users perform their own analysis on data sets and automate spreadsheet processing without the involvement of IT, governance must be revisited to maintain process control in the new environment. In this book, emergent technologies that have given rise to data analytics and which form the evolving backdrop for digital transformation are introduced and explained, and prominent data analytics tools and capabilities will be demonstrated based on real world scenarios. The authors will provide a much-needed process discovery methodology describing how to survey the processing landscape to identify opportunities to deploy these capabilities. Perhaps most importantly, the authors will digest the mature existing data governance, IT governance, and model governance frameworks, but demonstrate that they do not comprehensively cover the full suite of data analytics builds, leaving a considerable governance gap. This book is meant to fill the gap and provide the reader with a fit-for-purpose and actionable governance framework to protect the value created by analytics deployment at scale. Project governance, investment governance, and risk governance precepts will be woven together to equip managers to structure the inevitable chaos that can result as end-users take matters into their own hands.