- бизнес-книги
- детские книги
- дом, дача
-
зарубежная литература
- зарубежная деловая литература
- зарубежная драматургия
- зарубежная классика
- зарубежная компьютерная литература
- зарубежная литература о культуре и искусстве
- зарубежная образовательная литература
- зарубежная поэзия
- зарубежная прикладная литература
- зарубежная психология
- зарубежная публицистика
- зарубежная религиозная и эзотерическая литература
- зарубежная религиозная литература
- зарубежная справочная литература
- зарубежная старинная литература
- зарубежная фантастика
- зарубежная эзотерическая литература
- зарубежное фэнтези
- зарубежные боевики
- зарубежные детективы
- зарубежные детские книги
- зарубежные любовные романы
- зарубежные приключения
- зарубежный юмор
- современная зарубежная литература
- знания и навыки
- история
- комиксы и манга
- легкое чтение
- психология, мотивация
- публицистика и периодические издания
- родителям
- серьезное чтение
- спорт, здоровье, красота
- хобби, досуг
Лейн Хобсон — Обработка естественного языка в действии
Понравилась книга? Поделись в соцсетях:
Автор: Лейн Хобсон
Издатель: Питер
Год: 2020
Возрастные ограничения: 16+
ISBN: 978-5-4461-1371-2
Описание: Последние достижения в области глубокого обучения позволяют создавать приложения, с исключительной точностью распознающие текст и речь. Что в результате? Появляются чат-боты, ведущие диалог не хуже реальных людей, программы, эффективно подбирающие резюме под заданную вакансию, развивается превосходный предиктивный поиск, автоматически генерируются аннотации документов. Благодаря новым приемам и инструментам, таким как Keras и Tensorflow, сегодня возможно как никогда просто реализовать качественную обработку естественного языка (NLP). «Обработка естественного языка в действии» станет вашим руководством по созданию программ, способных распознавать и интерпретировать человеческий язык. В издании рассказано, как с помощью готовых пакетов на языке Python извлекать из текста смыслы и адекватно ими распоряжаться. В книге дается расширенная трактовка традиционных методов NLP, что позволит задействовать нейронные сети, современные алгоритмы глубокого обучения и генеративные приемы при решении реальных задач, таких как выявление дат и имен, составление текстов и ответов на неожиданные вопросы.