- бизнес-книги
- детские книги
- дом, дача
-
зарубежная литература
- зарубежная деловая литература
- зарубежная драматургия
- зарубежная классика
- зарубежная компьютерная литература
- зарубежная литература о культуре и искусстве
- зарубежная образовательная литература
- зарубежная поэзия
- зарубежная прикладная литература
- зарубежная психология
- зарубежная публицистика
- зарубежная религиозная и эзотерическая литература
- зарубежная религиозная литература
- зарубежная справочная литература
- зарубежная старинная литература
- зарубежная фантастика
- зарубежная эзотерическая литература
- зарубежное фэнтези
- зарубежные боевики
- зарубежные детективы
- зарубежные детские книги
- зарубежные любовные романы
- зарубежные приключения
- зарубежный юмор
- современная зарубежная литература
- знания и навыки
- история
- комиксы и манга
- легкое чтение
- психология, мотивация
- публицистика и периодические издания
- родителям
- серьезное чтение
- спорт, здоровье, красота
- хобби, досуг
John Foreman W. — Data Smart. Using Data Science to Transform Information into Insight
Понравилась книга? Поделись в соцсетях:
Автор: John Foreman W.
Издатель: John Wiley & Sons Limited
ISBN: 9781118661482
Описание: Data Science gets thrown around in the press like it's magic. Major retailers are predicting everything from when their customers are pregnant to when they want a new pair of Chuck Taylors. It's a brave new world where seemingly meaningless data can be transformed into valuable insight to drive smart business decisions. But how does one exactly do data science? Do you have to hire one of these priests of the dark arts, the «data scientist,» to extract this gold from your data? Nope. Data science is little more than using straight-forward steps to process raw data into actionable insight. And in Data Smart, author and data scientist John Foreman will show you how that's done within the familiar environment of a spreadsheet. Why a spreadsheet? It's comfortable! You get to look at the data every step of the way, building confidence as you learn the tricks of the trade. Plus, spreadsheets are a vendor-neutral place to learn data science without the hype. But don't let the Excel sheets fool you. This is a book for those serious about learning the analytic techniques, the math and the magic, behind big data. Each chapter will cover a different technique in a spreadsheet so you can follow along: Mathematical optimization, including non-linear programming and genetic algorithms Clustering via k-means, spherical k-means, and graph modularity Data mining in graphs, such as outlier detection Supervised AI through logistic regression, ensemble models, and bag-of-words models Forecasting, seasonal adjustments, and prediction intervals through monte carlo simulation Moving from spreadsheets into the R programming language You get your hands dirty as you work alongside John through each technique. But never fear, the topics are readily applicable and the author laces humor throughout. You'll even learn what a dead squirrel has to do with optimization modeling, which you no doubt are dying to know.